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1 Chapter 1 - Measure Theory

1.1 Topology

Theorem 1.1. The closure of a set is a closed set.

Theorem 1.2. A set is closed if and only if it contains all of its limit points.

Theorem 1.3 (Heine-Borel). A subset of Rn is compact if and only if it is both closed and
bounded.

Theorem 1.4. In a metric space, sequential compactness is equivalent to compactness.

1.2 Rectangles in Rd

Theorem 1.5. If a rectangle is the almost disjoint union of finitely many other rectangles,
then the volume is the sum of the volumes. Symbolically, if R =

⋃N
k=1Rk, then

|R| =
N∑
k=1

|Rk|

Theorem 1.6. If a rectangle R is contained in a union of rectangles, then the volume of
R does not exceed the sum of the volumes. Symbolically, if R,R1, . . . RN are rectangles such
that R ⊂

⋃N
k=1Rk then

|R| ≤
N∑
k=1

|Rk|

Theorem 1.7. Any collection of disjoint open intervals in R is countable.

Proof. Let {Iα}α∈A be a collection of disjoint open intervals. Each Iα is nontrivial, so there
is a rational qα ∈ Iα. Thus we have qα distinct rational numbers, since the Iα’s are disjoint.
There cannot be more than a countable number of rationals, so A is countable.

Theorem 1.8. Every open subset O ⊂ R can be written uniquely as a countable union of
disjoint open intervals.

Theorem 1.9. Every open set O ⊂ Rd can be written as a countable union of almost disjoint
closed cubes.

Theorem 1.10. The Cantor middle-thirds set is compact, totally disconnected, and perfect.

1.3 Exterior Lebesgue Measure

Theorem 1.11. The exterior measure of a rectangle is equal to is volume.

Theorem 1.12. The exterior measure of Rd is infinite.

Theorem 1.13. The exterior measure of the Cantor (middle-thirds) set is zero.
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Theorem 1.14. Let E ⊂ Rd. For ε > 0, there exists a covering E ⊂
⋃∞
j=1Qj such that

∞∑
j=1

|Qj| ≤ m∗(E) + ε

Theorem 1.15. The exterior measure of a subset does not exceed the exterior measure of
the containing set. Symbolically,

E1 ⊂ E2 =⇒ m∗(E1) ≤ m∗(E2)

Theorem 1.16. Exterior measure is countably sub-additive. Symbolically,

E =
∞⋃
j=1

Ej =⇒ m∗(E) ≤
∞∑
j=1

m∗(Ej)

Theorem 1.17. The exterior measure of E is equal to the infimum over the exterior mea-
sures of all open sets containing E. Symbolically,

m∗(E) = inf{m∗(O) : E ⊂ O and O is open}

Theorem 1.18. If two sets have positive distance from each other, then the exterior measure
of the union is the sum of the exterior measures. Symbolically,

d(E1, E2) < 0 =⇒ m∗(E1 ∪ E2) = m∗(E1) +m∗(E2)

Theorem 1.19. The exterior measure of a countable union of almost disjoint cubes is equal
to the sum of the measures of the cubes. Symbolically, if {Qj}∞j=1 is a collection of almost
disjoint cubes, then

m∗

(
∞⋃
j=1

Qj

)
=
∞∑
j=1

|Qj|

1.4 Lebesgue Measurable Sets

Theorem 1.20. Open and closed sets in Rd are measurable.

Theorem 1.21. Any set with exterior measure zero is measurable, and has measure zero.
More generally, any subset of a set of exterior measure zero is measurable and has measure
zero. Symbolically,

m∗(E) = 0 and F ⊂ E =⇒ m(F ) = 0

In other words, Lebesgue measure is complete. (See chapter 6 for definition of complete.)

Theorem 1.22. The collection of measurable subsets of Rd forms a σ-algebra. That is,
countable unions and intersections of measurable sets are measurable and the complement of
a measurable set is measurable.
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Theorem 1.23. The distance between a disjoint pair of a closed and a compact set is positive.
Symbolically, if F is closed, K is compact, and F ∩K = ∅, then d(F,K) > 0.

Theorem 1.24. Lebesgue measure is σ-additive. That is, the measure of a countable union
of disjoint measurable sets is the sum of the measures. Symbolically, if {En}∞n=1 is a collection
of disjoint measurable sets, then

m

(
∞⋃
n=1

En

)
=
∞∑
n=1

m(En)

Theorem 1.25. The measure of the limit of an increasing sequence of measurable sets is
the limit of the measures of the sets. Symbolically,

En ↗ E =⇒ m(E) = lim
n→∞

m(En)

where each En is assumed to be measurable.

Theorem 1.26. The measure of the limit of a decreasing sequence of measurable sets is the
limit of the measures of the sets, provided that the limit sets eventually have finite measure.
Symbolically,

En ↘ E and ∃k such that m(Ek) <∞ =⇒ m(E) = lim
n→∞

m(En)

where each En is assumed to be measurable. (Note that if there is some k such that m(Ek) <
∞, then every Ek+j also has finite measure.)

Theorem 1.27 (Borel-Cantelli Lemma). Let {Ek}∞k=1 be a countable family of measurable
subsets of Rd such that

∑
km(Ek) < ∞, and let E = lim supk→∞Ek =

⋂
n

⋃
k≥nEk. Then

m(E) = 0.

Theorem 1.28 (Theorem 3.4 and Exercise 26). Let E ⊂ Rd. The following are equivalent:

1. E is measurable.

2. For every ε > 0, there exists an open set O such that E ⊂ O and m(O \ E) < ε.

3. For every ε > 0, there exists a closed set F such that F ⊂ E and m(E \ F ) < ε.

Theorem 1.29. Let E ⊂ Rd be measurable with m(E) <∞. Then for ε > 0,

1. There exists a compact set K with K ⊂ E and m(E \K) < ε.

2. There exists a finite union F =
⋃N
j=1Qj of closed cubes such that m(E4F ) < ε.

Theorem 1.30 (Invariance Properties of Lebesgue Measure). Lebesgue measure is trans-
lation invariant, relatively dilation invariant, and reflection invariant. Symbolically, for
E ⊂ Rd, h ∈ Rd, δ > 0,

m(E + h) = m(E)

m(δE) = δdm(E)

m(−E) = m(E)

More generally, if δ = (δ1, . . . , δd) is a d-tuple of positive real numbers then

m(δE) = (δ1 . . . δd)m(E)
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Theorem 1.31. Let E ⊂ Rd be measureable and L : Rd → Rd a linear transformation.
Then L(E) is measurable.

Theorem 1.32. Let B be a ball in Rd with radius r. Then m(B) = vdr
d where vd is the

measure of the unit ball centered at the origin.

Theorem 1.33. Gδ sets and Fσ sets are Borel sets.

Theorem 1.34. Let E ⊂ Rd. The following are equivalent:

1. E is measurable.

2. There exists G ∈ Gδ such that m(E \G) = 0.

3. There exists F ∈ Fσ such that m(E \ F ) = 0.

Theorem 1.35. Let A,B,E be subset of Rd such that A ⊂ E ⊂ B, the sets A and B are
measurable, and m(A) = m(B). Then E is measurable, and thus m(E) = m(A) = m(B).

Theorem 1.36. Let E ⊂ R where m∗(E) > 0. For each α ∈ (0, 1), there exists an open
interval I so that m∗(E ∩ I) ≥ αm∗(I).

Theorem 1.37. There exists a non-measurable subset of R.

Theorem 1.38. Every subset of Rd with strictly positive outer measure contains a non-
measurable subset.

Theorem 1.39. The axiom of choice and the well-ordering principle are equivalent.

1.5 Measurable Functions

Theorem 1.40. If f is measurable, then −f is measurable.

Theorem 1.41. Let f : E → R. The following are equivalent:

1. f is measurable.

2. f−1(O) is measurable for every open set O.

3. f−1(F ) is measurable for every closed set F .

Theorem 1.42. Continuous functions are measurable.

Theorem 1.43. The composition of a measurable and finite-valued function with a contin-
uous function on the right is measurable. That is, if f is measurable and finite-valued and φ
is continuous, then φ ◦ f is measurable.

Theorem 1.44. Let {fn}∞n=1 be a sequence of measurable functions. Then

sup
n
fn inf

n
fn lim sup

n→∞
fn lim inf

n→∞
fn

are also measurable functions.
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Theorem 1.45. If f is the limit of a sequence of measurable functions, then f is measurable.
Symbolically,

f(x) = lim
n→∞

fn(x) =⇒ f is measurable

Theorem 1.46. The sum or pointwise multiplication of finite-valued measurable functions
is measurable. Symbolically, if f, g are measurable and finite-valued, then f + g and fg are
measurable.

Theorem 1.47. Let f be a measurable function and suppose g is a function such that
f(x) = g(x) almost everywhere. Then g is measurable.

Theorem 1.48. Suppose f is a non-negative measurable function on Rd. Then there exists
an increasing sequence of non-negative simple functions {φk}∞k=1 that converges pointwise to
f , that is,

φk(x) ≤ φk+1(x) lim
k→∞

φk(x) = f(x)

for all x.

Theorem 1.49. Suppoet f is measurable on Rd. Then there is a sequence of simple functions
φk such that

|φk(x)| ≤ |φk+1(x)| lim
k→∞

φk(x) = f(x) |φk(x)| ≤ |f(x)|

for all x. Note that this generalizes the above result.

Theorem 1.50. Let f be measurable on Rd. Then there exists a sequence of step functions
ψk that converges pointwise to f(x) for almost every x. That is,

lim
k→∞

ψk(x) = f(x) a.e. x

Theorem 1.51. Let f be measurable on Rd. Then there exists a sequence fk of continuous
functions such that fk → f pointwise for a.e. x.

Littlewood’s Three Principles

1. Every measurable set is nearly a finite union of intervals.

2. Every measurable function is nearly continuous. (see Lusin’s Theorem)

3. Every convergent sequence of measurable functions is nearly uniformly continuous.
(see Egorov’s Theorem)

Theorem 1.52 (Egorov’s Theorem). Suppose fk is a sequence of measurable functions de-
fined on a measurable set E with m(E) < ∞, such that fk → f a.e. on E. Then for every
ε > 0, there is a closed set Aε ⊂ E such that m(E \ Aε) < ε and fk → f uniformly on Aε.

Theorem 1.53 (Lusin’s Theorem). Suppose f is measurable and finite-valued on E with
m(E) < ∞. Then for every ε > 0 there exists a closed set Fε such that Fε ⊂ E and
m(E \ Fε) such that f |Fε is continuous.

Theorem 1.54 (Brunn-Minkowski Inequality). Let A,B be measurable sets in Rd so that
A+B is measurable. Then

m(A+B)1/d ≥ m(A)1/d +m(B)1/d
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2 Chapter 2 - Integration

2.1 The Lebesuge Integral

Theorem 2.1 (Bounded Convergence Theorem). Suppose fn is a sequence of measurable
functions that are all bounded by M and supported on a set E of finite measure and fn(x)→
f(x) a.e. as n→∞. Then f is measurable, bounded, supported on E, and

lim
n→∞

∫
|fn − f | = 0

As a result,

lim
n→∞

∫
fn =

∫
f

Theorem 2.2. If f ≥ 0 and
∫
f = 0, then f = 0 almost everywhere.

Theorem 2.3. If f is integrable, then f(x) <∞ almost everywhere.

Theorem 2.4 (Agreement with Riemann Integral). If f is Riemann integrable on [a, b],

then f is measurable and the Riemann integral
∫ b
a
f is equal to the Lebesgue integral

∫
[a,b]

f .

Theorem 2.5. Define the functions

fa(x) =

{
|x|−a |x| ≤ 1

0 |x| > 1

Fa(x) =
1

1 + |x|a

Then fa is integrable if and only if a < d. Fa is integrable if an only if a > d.

Theorem 2.6 (Properties of Lebesgue Integral). Let f, g be integrable functions. Then

a, b ∈ R =⇒
∫

(af + bg) = a

∫
f + b

∫
g

E ∩ F = ∅ =⇒
∫
E∪F

f =

∫
E

f +

∫
F

f

f ≤ g =⇒
∫
f ≤

∫
g∣∣∣∣∫ f

∣∣∣∣ ≤ ∫ |f |
Theorem 2.7 (Fatou’s Lemma). Let fn be a sequence of nonnegative measurable functions.
If limn→∞ fn(x) = f(x) for a.e. x, then∫

f ≤ lim inf
n→∞

∫
fn
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Theorem 2.8 (Corollary to Fatou’s Lemma). Let f be a nonnegative measurable function
and fn a sequence of nonnegative measurable functions with fn ≤ f and fn → f for a.e. x.
Then

lim
n→∞

∫
fn =

∫
f

Theorem 2.9 (Monotone Convergence Theorem). Suppose that {fn} is a sequence of non-
negative measurable functions with fn ↗ f (that is, fn ≤ fn+1 a.e. and limn→∞ fn(x) = f(x)
a.e.). Then

lim
n→∞

∫
fn =

∫
f

Theorem 2.10. Let
∑∞

k=1 ak(x) be a series where each ak is a nonnegative measurable
function. Then ∫ ∞∑

k=1

ak(x)dx =
∞∑
k=1

∫
ak(x)dx

Consequently, if
∑

k

∫
ak(x)dx is finite, the series

∑
k ak(x) converges for a.e. x.

Theorem 2.11. Let f be integrable on Rd. For every ε > 0, there exists a set B of finite
measure such that ∫

Rd\B
|f | < ε

Theorem 2.12. Let f be integrable on Rd. Then for every ε > 0, there exists δ > 0 such
that

m(E) < δ =⇒
∫
E

|f | < ε

Theorem 2.13 (Dominated Convergence Theorem). Let {fn} be a sequence of measurable
functions such that fn(x) → f(x) a.e. and there exists an integrable function g such that
|fn(x)| ≤ g(x). Then

lim
n→∞

∫
|fn − f | = 0

lim
n→∞

∫
fn =

∫
f

2.2 The Banach Space of Integrable Functions

Theorem 2.14 (Properties of L1). Let f, g ∈ L1 and a ∈ R. Then

‖af‖ = |a| ‖f‖
‖f + g‖ ≤ ‖f‖+ ‖g‖
‖f‖ = 0 ⇐⇒ f = 0 a.e.

That is, the map f 7→
∫
|f | is a norm on L1. Additionally, d(f, g) = ‖f−g‖ defines a metric

on L1.
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Theorem 2.15 (Riesz-Fischer Theorem, for p = 1). The vector space L1 is complete in its
metric.

Theorem 2.16. L1 is a Banach space.

Theorem 2.17. If fn is a sequence of L1 functions that converges to f in the L1 norm, then
there is a subsequence fnk such that fnk(x)→ f(x) a.e.

Theorem 2.18. The following families of functions are dense in L1: simple functions, step
functions, and continuous functions of compact support.

Theorem 2.19 (Transformation Invariance Properties of the Integral). Let f ∈ L1. Then
for h ∈ Rd and δ > 0 we have∫

Rd
f(x− h)dx =

∫
Rd
f(x)dx∫

Rd
f(δx)dx = δ−d

∫
Rd
f(x)dx∫

Rd
f(−x)dx =

∫
Rd
f(x)dx

Theorem 2.20. Let f ∈ L1 and h ∈ Rd. Then ‖fh − f‖ → 0 as h → 0. Analogously, for
δ > 0, ‖f(δx)− f(x)‖ → 0 as δ → 1.

2.3 Fubini’s Theorem and Consequences

Theorem 2.21 (Fubini’s Theorem). Let f(x, y) be integrable on Rd1×Rd2. Then for almost
every y ∈ Rd2,

1. The slice f y is integrable on Rd1.

2. The function g : Rd2 → R define by g(y) =
∫
Rd1 f

y(x)dx is integrable on Rd2.

3. Integrating g gives the integral of f , that is,∫
Rd2

g(y)dy =

∫
Rd2

(∫
Rd1

f(x, y)dx

)
dy =

∫
Rd1+d2

f

Consequently, we can interchange the order of integration as follows:∫
Rd2

(∫
Rd1

f(x, y)dx

)
dy =

∫
Rd1

(∫
Rd2

f(x, y)dy

)
dx

Theorem 2.22 (Tonelli’s Theorem, AKA Fubini’s Theorem Part Two). Let f be a non-
neagative measurable function on Rd1 × Rd2. Then for almost every y ∈ Rd2,

1. The slice f y is integrable on Rd1.

2. The function g : Rd2 → R define by g(y) =
∫
Rd1 f

y(x)dx is integrable on Rd2.
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3. Integrating g gives the integral of f , that is,∫
Rd2

g(y)dy =

∫
Rd2

(∫
Rd1

f(x, y)dx

)
dy =

∫
Rd1+d2

f

Consequently, we can interchange the order of integration as follows:∫
Rd2

(∫
Rd1

f(x, y)dx

)
dy =

∫
Rd1

(∫
Rd2

f(x, y)dy

)
dx

Theorem 2.23. Let E be a measurable subset of Rd1 ×Rd2. Then for almost every y ∈ Rd2,
the slice

Ey = {x ∈ Rd1 : (x, y) ∈ E}
is a measurable subset of Rd1. Moreover, m(Ey) is a measurable function of y and

m(E) =

∫
Rd1

m(Ey)dy

A symmetric result holds for x-slices of Rd2.

Theorem 2.24. If E = E1 × E2 is a measurable subset of Rd, and m∗(E2) > 0, then E1 is
measurable.

Theorem 2.25. For E1 ⊂ Rd1 and E2 ⊂ Rd2, we have m∗(E1 × E2) ≤ m∗(E1)m∗(E2).
(Note that for this inequality, we interpret the product of zero and infinity to be zero.)

Theorem 2.26. Let E1 ⊂ Rd1 and E2 ⊂ Rd2 be measurable sets. Then E1×E2 is measurable
in Rd1 × Rd2 and m(E) = m(E1)m(E2). (we interpret zero times infinity to be zero.)

Theorem 2.27. Let f : Rd1 → [−∞,∞]] be a measurable function. Then the function

f̃ : Rd1 × Rd2 → [−∞,∞] defined by f̃(x, y) = f(x) is measurable on Rd1 × Rd2.

Theorem 2.28 (Area Under a Curve). Let f : Rd → [0,∞] be a non-negative measurable
function. Let

A = {(x, y) ∈ Rd × R : 0 ≤ y ≤ f(x)}
Then f is measurable on Rd if and only if A is measurable in Rd+1, and if f is measurable,
then ∫

Rd
f(x)dx = m(A)

This says that the measure of the area under an integrable function is equal to the integral
of that function.

Theorem 2.29. If f is a measurable function on Rd, then the function f̃(x, y) = f(x − y)
is measurable on Rd × Rd.

Theorem 2.30. Let f be integrable on R. Then F (x) =
∫ x
−∞ f(t)dt is uniformly continuous.

Theorem 2.31 (Tchebychev Inequality). Let f ≥ 0 and f be integrable. For α > 0 and
Eα = {x : f(x) > α}, we have

m(Eα) ≤ 1

α

∫
Eα

f
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3 Chapter 3 - Differentiation

Theorem 3.1 (Hardy-Littlewood Maximal Function). Let f ∈ L1(Rd). Then f ∗ is measur-
able, f ∗(x) <∞ for a.e. x, and for all α > 0

m({x ∈ Rd : f ∗(x) > α} ≤ 3d

α

∫
Rd
|f(y)|dy

Compare this to the Tchebychev inequality, which says

m({x ∈ Rd : f(x) > α} ≤ 1

α

∫
Rd
|f(y)|dy

Theorem 3.2 (Vitality Covering Lemma). Let {B1, . . . , BN} be a finite collection of open
balls in Rd. There exists a disjoint subcollection Bi1 , . . . , Bik such that

N⋃
n=1

Bn ⊂
k⋃
j=1

3Bij

Thus

m

(
N⋃
n=1

Bn

)
≤ 3d

k∑
j=1

m(Bij)

Theorem 3.3 (Lebesgue Differentiation Theorem). If f ∈ L1(Rd), then

lim
m(B)→0
x∈B

1

m(B)

∫
B

f(y)dy = f(x)

for almost every x. In fact, the result holds if we only assume that f is locally integrable.

Theorem 3.4. Let E be a measurable subset or Rd and let A be the set of Lebesgue density
points of E. Then almost every x ∈ E is in A and almost every x ∈ Ec is in Ac. Equivalently,

m(E \ A) = 0 m(A \ E) = 0 m(E) = m(A) = m(E ∩ A)

3.1 Bounded Variation and Absolute Continuity

Theorem 3.5. If F is real-valued, monotonic, and bounded, then F is of bounded variation.

Theorem 3.6. If F if differentiable everywhere and F ′ is bounded, then F is of bounded
variation. Furthermore, F is absolutely continuous.

Theorem 3.7. Every BV function can be written as a difference of two increasing functions.

Theorem 3.8. Every BV function is differentiable almost everywhere.
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Theorem 3.9 (Rising Sun Lemma). Let G be real-valued and continuous on R, and let

E = {x : G(x+ h) > G(x) for some h > 0}

If E is nonempty, then it is open. In this case, E can be written as a countable disjoint
union of open intervals E =

⋃
(ak, bk) such that

G(bk) = G(ak)

Theorem 3.10. If F is increasing and continuous, then F ′ exists almost everywhere. Ad-
ditionally, F ′ is measurable and nonnegative and∫ b

a

F ′(x)dx ≤ F (b)− F (a)

Note: To get equality, we need stronger conditions on F . Specifically, we need absolute
continuity.

Relevant “counter-example” to the obvious stronger version of the previous theorem: Let F
be the Cantor-Lebesgue function. Then F ′(x) = 0 a.e., so

∫ b
a
F ′(x)dx = 0, but F (1) = 1 and

F (0) = 0.

Theorem 3.11. Absolutely continuous functions are uniformly continuous.

Theorem 3.12. Absolutely continuous functions are of bounded variation.

Theorem 3.13. If F is absolutely continuous on [a, b], then TF is absolutely continuous on
[a, b].

Theorem 3.14. If f is integrable and F (x) =
∫ x
a
f(y)dy, then F is absolutely continuous.

Theorem 3.15. If F is absolutely continuous on [a, b], then F ′(x) exists almost everywhere.
If F ′(x) = 0 for a.e. x, then F is constant.

Theorem 3.16. Suppose E is a set of finite measure and B is a Vitali covering of E. Then
for any δ > 0 there is a finite, disjoint, collection of balls B1, . . . , BN in B such that

N∑
i=1

m(Bi) ≥ m(E)− δ

That is, we can “approximate” the E with coverings of balls whose total measure only barely
exceeds that of E.

Theorem 3.17. Suppose E is a set of finite measure and B is a Vitali covering of E. Then
for any δ > 0 there is a finite, disjoint, collection of balls B1, . . . , BN in B such that

m

(
E \

N⋃
i=1

Bi

)
< 2δ
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Theorem 3.18. Suppose F is absolutely continuous on [a, b]. Then F ′ exists almost every-
where and is integrable. Moreover,∫ x

a

F ′(y)dy = F (x)− F (a)

for all a ≤ x ≤ b. In particular, we can choose x = b to get∫ b

a

F ′(y)dy = F (b)− F (a)

Conversely, if f is integrable on [a, b] then if we define F (x) =
∫ x
a
f(y)dy, then F ′(x) = f(x)

almost everywhere.

Theorem 3.19. A bounded increasing function on [a, b] has at most countably many jump
discontinuities.

Theorem 3.20. Let F be increasing and bounded on [a, b]. Then JF (x) is discontinuous
exactly at the points {xn} and has a jump at xn equal that of F . Furthermore, the function
F (x)− JF (x) is increasing and continuous.

Theorem 3.21. Let F be increasing and bounded on [a, b] and let JF (x) be its jump function.
Then J ′(x) exists a.e. and J ′(x) = 0 a.e.

Theorem 3.22. If F ∈ BV[a, b], then∫ b

a

|F ′(x)|dx ≤ TF (b)

Equality holds if and only if F is absolutely continuous.

Theorem 3.23. If f : R→ R is absolutely continuous, then f maps sets of measure zero to
sets of measure zero, and f maps measurable sets to measurable sets.

Theorem 3.24 (Change of Variable Formula). Let F be absolutely continuous and increasing
on [a, b] and set A = F (a) and B = F (b). Let f be a measurable function on [A,B]. Then
f(F (x))F ′(x) is measurable on [a, b], and if f is integrable on [A,B] then∫ B

A

f(y)dy =

∫ b

a

f(F (x))F ′(x)dx

4 Chapter 6 - Abstract Measures

4.1 Abstract Measure Spaces

Theorem 4.1. Let m∗ denote the Lebesgue outer measure. Then m∗ is an outer measure.

Theorem 4.2. Let m∗ denote the Lebesgue outer measure. Then a set E ⊂ Rd is Carathéodory
measurable with respect to m∗ if and only if E is Lebesgue measurable.
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Theorem 4.3. Let X be a set and µ∗ be an outer measure. Then the collection M of
Carathéodory measurable sets forms a σ-algebra, and µ∗|M is a measure.

Theorem 4.4. If µ∗ is a metric exterior measure on a metric space X, then the Borel sets
in X are measurable. Therefore, µ∗|BX is a measure.

Theorem 4.5. Let (X, d) be a measure set and µ is a Borel measure on X such that for a
ball B of finite radius, µ(B) is finite. Then µ is a regular measure.

Theorem 4.6. If µ0 is a premeasure on an algebra A, define µ∗ on any subset E of X by

µ∗(E) = inf

{
∞∑
j=1

µ0(Ej) : E ⊂
∞⋃
j=1

Ej, Ej ∈ A

}

Then µ∗ is an exterior measure on X that satisfies µ∗(E) = µ0(E) for E ∈ A, and all sets
in A are Carathéodory measurable.

Theorem 4.7. Let A be an algebra of sets in X and µ0 a premeasure on A and M the
σ-algebra generated by A. Then there is a measure µ on M that extends µ0.

4.2 Integration in Abstract Measure Spaces

All of the following definitions, concepts, and theorems are easily generalized from the devel-
opment of Lebesgue measure and Lebesgue integration on Rd to a general σ-finite measure
space.

1. Almost everywhere

2. Measurable functions, simple functions

3. Every non-negative measurable function can be approximated by an increasing se-
quence of simple functions.

4. Every measurable function can be approximated by a sequence of simple functions.

5. Egorov’s Theorem

6. Integrable functions

7. Fatou’s Lemma, Monotone Convergence Theorem, Dominated Convergence Theorem

8. The space L1(X,µ) of integrable functions is a Banach space.

9. Fubini and Tonelli Theorems

Theorem 4.8. Let F be an increasing and normalized function on R. Then there is a unique
measure µ (also denoted dF ) on the Borel sets of R such that µ((a, b]) = F (b) − F (a) for
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a < b. Conversely, if µ is a measure on the Borel sets of R that is finite on bounded intervals,
then F defined by

F (x) =


−µ((−x, 0]) x < 0

0 x = 0

µ((0, x]) x > 0

is increasing and normalized.

Theorem 4.9. Two increasing functions F and G give the same measure if F−G is constant.

Theorem 4.10. If F is absolutely continuous on [a, b], then∫ b

a

f(x)dF (x) =

∫ b

a

f(x)F ′(x)dx

for every Borel measurable function f that is integrable with respect to dµ.

Theorem 4.11. Let ν be a signed measure. Then the total variation of ν, denoted |ν|, is a
positive measure, and satisfies ν ≤ |ν|.

Theorem 4.12. If ν � µ and ν ⊥ µ, then ν(E) = 0 for all E.

Theorem 4.13. Let (X,M, µ) be a measure space and let f ∈ L1(X,µ). Then ν defined by

ν(E) =

∫
E

fdµ

is a signed measure on X. Furthermore, ν � µ.

Theorem 4.14 (Radon-Nikodym Theorem). Let µ be a σ-finite positive measure on the
measure space (X,M) and let ν be a σ-finite signed measure onM. Then there exist unique
signed measure νa and νs so that νa � µ and νs ⊥ µ and ν = νa + νs. In addition, the
measure νa is of the form dνa = fdµ, that is,

νa(E) =

∫
E

f(x)dµ

for some extended µ-integrable function f .

Theorem 4.15. Let C([a, b]) denote the vector space of continuous functions on the compact
interval [a, b]. If µ is a Borel measure on [a, b] with µ([a, b]) <∞, then ` : C([a, b])→ [∞,∞]
given by

`(f) =

∫ b

a

f(x)dµ

is a linear functional. It is positive (f ≥ 0 =⇒ `(f) ≥ 0). Conversely, if ` is a positive

linear functional on C([a, b]), then there is a unique Borel measure µ so that `(f) =
∫ b
a
fdµ

for f ∈ C([a, b]).
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