Theorems Real analysis qualifying course MSU, Fall 2016

Joshua Ruiter

October 15, 2019

This document was made as a way to study the material from the fall semester real analysis qualifying course at Michigan State University, in fall of 2016. It serves as a companion document to the "Definitions" review sheet for the same class. The main textbook for the course was *Real Analysis: Measure Theory, Integration, and Hilbert Spaces* by Elias Stein and Rami Shakarchi, and this document closely follows the order of material in that book.

Contents

1	Chapter 1 - Measure Theory	3
	1.1 Topology	. 3
	1.2 Rectangles in \mathbb{R}^d	. 3
	1.3 Exterior Lebesgue Measure	. 3
	1.4 Lebesgue Measurable Sets	. 4
	1.5 Measurable Functions	. 6
2	2 Chapter 2 - Integration	8
	2.1 The Lebesuge Integral	. 8
	2.2 The Banach Space of Integrable Functions	. 9
	2.3 Fubini's Theorem and Consequences	. 10
3	3 Chapter 3 - Differentiation	12
	3.1 Bounded Variation and Absolute Continuity	. 12
4	Chapter 6 - Abstract Measures	14
	4.1 Abstract Measure Spaces	. 14
	4.2 Integration in Abstract Measure Spaces	. 15

1 Chapter 1 - Measure Theory

1.1 Topology

Theorem 1.1. The closure of a set is a closed set.

Theorem 1.2. A set is closed if and only if it contains all of its limit points.

Theorem 1.3 (Heine-Borel). A subset of \mathbb{R}^n is compact if and only if it is both closed and bounded.

Theorem 1.4. In a metric space, sequential compactness is equivalent to compactness.

1.2 Rectangles in \mathbb{R}^d

Theorem 1.5. If a rectangle is the almost disjoint union of finitely many other rectangles, then the volume is the sum of the volumes. Symbolically, if $R = \bigcup_{k=1}^{N} R_k$, then

$$|R| = \sum_{k=1}^{N} |R_k|$$

Theorem 1.6. If a rectangle R is contained in a union of rectangles, then the volume of R does not exceed the sum of the volumes. Symbolically, if $R, R_1, \ldots R_N$ are rectangles such that $R \subset \bigcup_{k=1}^N R_k$ then

$$|R| \le \sum_{k=1}^{N} |R_k|$$

Theorem 1.7. Any collection of disjoint open intervals in \mathbb{R} is countable.

Proof. Let $\{I_{\alpha}\}_{{\alpha}\in A}$ be a collection of disjoint open intervals. Each I_{α} is nontrivial, so there is a rational $q_{\alpha}\in I_{\alpha}$. Thus we have q_{α} distinct rational numbers, since the I_{α} 's are disjoint. There cannot be more than a countable number of rationals, so A is countable.

Theorem 1.8. Every open subset $\mathcal{O} \subset \mathbb{R}$ can be written uniquely as a countable union of disjoint open intervals.

Theorem 1.9. Every open set $\mathcal{O} \subset \mathbb{R}^d$ can be written as a countable union of almost disjoint closed cubes.

Theorem 1.10. The Cantor middle-thirds set is compact, totally disconnected, and perfect.

1.3 Exterior Lebesgue Measure

Theorem 1.11. The exterior measure of a rectangle is equal to is volume.

Theorem 1.12. The exterior measure of \mathbb{R}^d is infinite.

Theorem 1.13. The exterior measure of the Cantor (middle-thirds) set is zero.

Theorem 1.14. Let $E \subset \mathbb{R}^d$. For $\epsilon > 0$, there exists a covering $E \subset \bigcup_{j=1}^{\infty} Q_j$ such that

$$\sum_{j=1}^{\infty} |Q_j| \le m_*(E) + \epsilon$$

Theorem 1.15. The exterior measure of a subset does not exceed the exterior measure of the containing set. Symbolically,

$$E_1 \subset E_2 \implies m_*(E_1) \leq m_*(E_2)$$

Theorem 1.16. Exterior measure is countably sub-additive. Symbolically,

$$E = \bigcup_{i=1}^{\infty} E_i \implies m_*(E) \le \sum_{j=1}^{\infty} m_*(E_j)$$

Theorem 1.17. The exterior measure of E is equal to the infimum over the exterior measures of all open sets containing E. Symbolically,

$$m_*(E) = \inf\{m_*(\mathcal{O}) : E \subset \mathcal{O} \text{ and } \mathcal{O} \text{ is open}\}\$$

Theorem 1.18. If two sets have positive distance from each other, then the exterior measure of the union is the sum of the exterior measures. Symbolically,

$$d(E_1, E_2) < 0 \implies m_*(E_1 \cup E_2) = m_*(E_1) + m_*(E_2)$$

Theorem 1.19. The exterior measure of a countable union of almost disjoint cubes is equal to the sum of the measures of the cubes. Symbolically, if $\{Q_j\}_{j=1}^{\infty}$ is a collection of almost disjoint cubes, then

$$m_* \left(\bigcup_{j=1}^{\infty} Q_j \right) = \sum_{j=1}^{\infty} |Q_j|$$

1.4 Lebesgue Measurable Sets

Theorem 1.20. Open and closed sets in \mathbb{R}^d are measurable.

Theorem 1.21. Any set with exterior measure zero is measurable, and has measure zero. More generally, any subset of a set of exterior measure zero is measurable and has measure zero. Symbolically,

$$m_*(E) = 0$$
 and $F \subset E \implies m(F) = 0$

In other words, Lebesgue measure is complete. (See chapter 6 for definition of complete.)

Theorem 1.22. The collection of measurable subsets of \mathbb{R}^d forms a σ -algebra. That is, countable unions and intersections of measurable sets are measurable and the complement of a measurable set is measurable.

Theorem 1.23. The distance between a disjoint pair of a closed and a compact set is positive. Symbolically, if F is closed, K is compact, and $F \cap K = \emptyset$, then d(F, K) > 0.

Theorem 1.24. Lebesgue measure is σ -additive. That is, the measure of a countable union of disjoint measurable sets is the sum of the measures. Symbolically, if $\{E_n\}_{n=1}^{\infty}$ is a collection of disjoint measurable sets, then

$$m\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} m(E_n)$$

Theorem 1.25. The measure of the limit of an increasing sequence of measurable sets is the limit of the measures of the sets. Symbolically,

$$E_n \nearrow E \implies m(E) = \lim_{n \to \infty} m(E_n)$$

where each E_n is assumed to be measurable.

Theorem 1.26. The measure of the limit of a decreasing sequence of measurable sets is the limit of the measures of the sets, provided that the limit sets eventually have finite measure. Symbolically,

$$E_n \searrow E$$
 and $\exists k$ such that $m(E_k) < \infty \implies m(E) = \lim_{n \to \infty} m(E_n)$

where each E_n is assumed to be measurable. (Note that if there is some k such that $m(E_k) < \infty$, then every E_{k+j} also has finite measure.)

Theorem 1.27 (Borel-Cantelli Lemma). Let $\{E_k\}_{k=1}^{\infty}$ be a countable family of measurable subsets of \mathbb{R}^d such that $\sum_k m(E_k) < \infty$, and let $E = \limsup_{k \to \infty} E_k = \bigcap_n \bigcup_{k \ge n} E_k$. Then m(E) = 0.

Theorem 1.28 (Theorem 3.4 and Exercise 26). Let $E \subset \mathbb{R}^d$. The following are equivalent:

- 1. E is measurable.
- 2. For every $\epsilon > 0$, there exists an open set \mathcal{O} such that $E \subset \mathcal{O}$ and $m(\mathcal{O} \setminus E) < \epsilon$.
- 3. For every $\epsilon > 0$, there exists a closed set F such that $F \subset E$ and $m(E \setminus F) < \epsilon$.

Theorem 1.29. Let $E \subset \mathbb{R}^d$ be measurable with $m(E) < \infty$. Then for $\epsilon > 0$,

- 1. There exists a compact set K with $K \subset E$ and $m(E \setminus K) < \epsilon$.
- 2. There exists a finite union $F = \bigcup_{j=1}^{N} Q_j$ of closed cubes such that $m(E \triangle F) < \epsilon$.

Theorem 1.30 (Invariance Properties of Lebesgue Measure). Lebesgue measure is translation invariant, relatively dilation invariant, and reflection invariant. Symbolically, for $E \subset \mathbb{R}^d$, $h \in \mathbb{R}^d$, $\delta > 0$,

$$m(E + h) = m(E)$$

$$m(\delta E) = \delta^{d} m(E)$$

$$m(-E) = m(E)$$

More generally, if $\delta = (\delta_1, \dots, \delta_d)$ is a d-tuple of positive real numbers then

$$m(\delta E) = (\delta_1 \dots \delta_d) m(E)$$

Theorem 1.31. Let $E \subset \mathbb{R}^d$ be measureable and $L : \mathbb{R}^d \to \mathbb{R}^d$ a linear transformation. Then L(E) is measurable.

Theorem 1.32. Let B be a ball in \mathbb{R}^d with radius r. Then $m(B) = v_d r^d$ where v_d is the measure of the unit ball centered at the origin.

Theorem 1.33. G_{δ} sets and F_{σ} sets are Borel sets.

Theorem 1.34. Let $E \subset \mathbb{R}^d$. The following are equivalent:

- 1. E is measurable.
- 2. There exists $G \in G_{\delta}$ such that $m(E \setminus G) = 0$.
- 3. There exists $F \in F_{\sigma}$ such that $m(E \setminus F) = 0$.

Theorem 1.35. Let A, B, E be subset of \mathbb{R}^d such that $A \subset E \subset B$, the sets A and B are measurable, and m(A) = m(B). Then E is measurable, and thus m(E) = m(A) = m(B).

Theorem 1.36. Let $E \subset \mathbb{R}$ where $m_*(E) > 0$. For each $\alpha \in (0,1)$, there exists an open interval I so that $m_*(E \cap I) \geq \alpha m_*(I)$.

Theorem 1.37. There exists a non-measurable subset of \mathbb{R} .

Theorem 1.38. Every subset of \mathbb{R}^d with strictly positive outer measure contains a non-measurable subset.

Theorem 1.39. The axiom of choice and the well-ordering principle are equivalent.

1.5 Measurable Functions

Theorem 1.40. If f is measurable, then -f is measurable.

Theorem 1.41. Let $f: E \to \mathbb{R}$. The following are equivalent:

- 1. f is measurable.
- 2. $f^{-1}(\mathcal{O})$ is measurable for every open set \mathcal{O} .
- 3. $f^{-1}(F)$ is measurable for every closed set F.

Theorem 1.42. Continuous functions are measurable.

Theorem 1.43. The composition of a measurable and finite-valued function with a continuous function on the right is measurable. That is, if f is measurable and finite-valued and ϕ is continuous, then $\phi \circ f$ is measurable.

Theorem 1.44. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of measurable functions. Then

$$\sup_{n} f_{n} \qquad \inf_{n} f_{n} \qquad \limsup_{n \to \infty} f_{n} \qquad \liminf_{n \to \infty} f_{n}$$

are also measurable functions.

Theorem 1.45. If f is the limit of a sequence of measurable functions, then f is measurable. Symbolically,

$$f(x) = \lim_{n \to \infty} f_n(x) \implies f \text{ is measurable}$$

Theorem 1.46. The sum or pointwise multiplication of finite-valued measurable functions is measurable. Symbolically, if f, g are measurable and finite-valued, then f + g and fg are measurable.

Theorem 1.47. Let f be a measurable function and suppose g is a function such that f(x) = g(x) almost everywhere. Then g is measurable.

Theorem 1.48. Suppose f is a non-negative measurable function on \mathbb{R}^d . Then there exists an increasing sequence of non-negative simple functions $\{\phi_k\}_{k=1}^{\infty}$ that converges pointwise to f, that is,

$$\phi_k(x) \le \phi_{k+1}(x)$$
 $\lim_{k \to \infty} \phi_k(x) = f(x)$

for all x.

Theorem 1.49. Suppose f is measurable on \mathbb{R}^d . Then there is a sequence of simple functions ϕ_k such that

$$|\phi_k(x)| \le |\phi_{k+1}(x)|$$

$$\lim_{k \to \infty} \phi_k(x) = f(x) \qquad |\phi_k(x)| \le |f(x)|$$

for all x. Note that this generalizes the above result.

Theorem 1.50. Let f be measurable on \mathbb{R}^d . Then there exists a sequence of step functions ψ_k that converges pointwise to f(x) for almost every x. That is,

$$\lim_{k \to \infty} \psi_k(x) = f(x) \quad a.e. \ x$$

Theorem 1.51. Let f be measurable on \mathbb{R}^d . Then there exists a sequence f_k of continuous functions such that $f_k \to f$ pointwise for a.e. x.

Littlewood's Three Principles

- 1. Every measurable set is nearly a finite union of intervals.
- 2. Every measurable function is nearly continuous. (see Lusin's Theorem)
- 3. Every convergent sequence of measurable functions is nearly uniformly continuous. (see Egorov's Theorem)

Theorem 1.52 (Egorov's Theorem). Suppose f_k is a sequence of measurable functions defined on a measurable set E with $m(E) < \infty$, such that $f_k \to f$ a.e. on E. Then for every $\epsilon > 0$, there is a closed set $A_{\epsilon} \subset E$ such that $m(E \setminus A_{\epsilon}) < \epsilon$ and $f_k \to f$ uniformly on A_{ϵ} .

Theorem 1.53 (Lusin's Theorem). Suppose f is measurable and finite-valued on E with $m(E) < \infty$. Then for every $\epsilon > 0$ there exists a closed set F_{ϵ} such that $F_{\epsilon} \subset E$ and $m(E \setminus F_{\epsilon})$ such that $f|_{F_{\epsilon}}$ is continuous.

Theorem 1.54 (Brunn-Minkowski Inequality). Let A, B be measurable sets in \mathbb{R}^d so that A + B is measurable. Then

$$m(A+B)^{1/d} \ge m(A)^{1/d} + m(B)^{1/d}$$

2 Chapter 2 - Integration

2.1 The Lebesuge Integral

Theorem 2.1 (Bounded Convergence Theorem). Suppose f_n is a sequence of measurable functions that are all bounded by M and supported on a set E of finite measure and $f_n(x) \to f(x)$ a.e. as $n \to \infty$. Then f is measurable, bounded, supported on E, and

$$\lim_{n \to \infty} \int |f_n - f| = 0$$

As a result,

$$\lim_{n \to \infty} \int f_n = \int f$$

Theorem 2.2. If $f \ge 0$ and $\int f = 0$, then f = 0 almost everywhere.

Theorem 2.3. If f is integrable, then $f(x) < \infty$ almost everywhere.

Theorem 2.4 (Agreement with Riemann Integral). If f is Riemann integrable on [a, b], then f is measurable and the Riemann integral $\int_a^b f$ is equal to the Lebesgue integral $\int_{[a,b]}^a f$.

Theorem 2.5. Define the functions

$$f_a(x) = \begin{cases} |x|^{-a} & |x| \le 1\\ 0 & |x| > 1 \end{cases}$$
$$F_a(x) = \frac{1}{1 + |x|^a}$$

Then f_a is integrable if and only if a < d. F_a is integrable if an only if a > d.

Theorem 2.6 (Properties of Lebesgue Integral). Let f, g be integrable functions. Then

$$a, b \in \mathbb{R} \implies \int (af + bg) = a \int f + b \int g$$

$$E \cap F = \emptyset \implies \int_{E \cup F} f = \int_{E} f + \int_{F} f$$

$$f \le g \implies \int f \le \int g$$

$$\left| \int f \right| \le \int |f|$$

Theorem 2.7 (Fatou's Lemma). Let f_n be a sequence of nonnegative measurable functions. If $\lim_{n\to\infty} f_n(x) = f(x)$ for a.e. x, then

$$\int f \le \liminf_{n \to \infty} \int f_n$$

Theorem 2.8 (Corollary to Fatou's Lemma). Let f be a nonnegative measurable function and f_n a sequence of nonnegative measurable functions with $f_n \leq f$ and $f_n \to f$ for a.e. x. Then

$$\lim_{n \to \infty} \int f_n = \int f$$

Theorem 2.9 (Monotone Convergence Theorem). Suppose that $\{f_n\}$ is a sequence of non-negative measurable functions with $f_n \nearrow f$ (that is, $f_n \le f_{n+1}$ a.e. and $\lim_{n\to\infty} f_n(x) = f(x)$ a.e.). Then

$$\lim_{n \to \infty} \int f_n = \int f$$

Theorem 2.10. Let $\sum_{k=1}^{\infty} a_k(x)$ be a series where each a_k is a nonnegative measurable function. Then

$$\int \sum_{k=1}^{\infty} a_k(x)dx = \sum_{k=1}^{\infty} \int a_k(x)dx$$

Consequently, if $\sum_{k} \int a_k(x) dx$ is finite, the series $\sum_{k} a_k(x)$ converges for a.e. x.

Theorem 2.11. Let f be integrable on \mathbb{R}^d . For every $\epsilon > 0$, there exists a set B of finite measure such that

$$\int_{\mathbb{R}^d \setminus B} |f| < \epsilon$$

Theorem 2.12. Let f be integrable on \mathbb{R}^d . Then for every $\epsilon > 0$, there exists $\delta > 0$ such that

$$m(E) < \delta \implies \int_{E} |f| < \epsilon$$

Theorem 2.13 (Dominated Convergence Theorem). Let $\{f_n\}$ be a sequence of measurable functions such that $f_n(x) \to f(x)$ a.e. and there exists an integrable function g such that $|f_n(x)| \leq g(x)$. Then

$$\lim_{n \to \infty} \int |f_n - f| = 0$$

$$\lim_{n \to \infty} \int f_n = \int f$$

2.2 The Banach Space of Integrable Functions

Theorem 2.14 (Properties of L^1). Let $f, g \in L^1$ and $a \in \mathbb{R}$. Then

$$||af|| = |a| ||f||$$

 $||f + g|| \le ||f|| + ||g||$
 $||f|| = 0 \iff f = 0 \text{ a.e.}$

That is, the map $f \mapsto \int |f|$ is a norm on L^1 . Additionally, d(f,g) = ||f-g|| defines a metric on L^1 .

Theorem 2.15 (Riesz-Fischer Theorem, for p = 1). The vector space L^1 is complete in its metric.

Theorem 2.16. L^1 is a Banach space.

Theorem 2.17. If f_n is a sequence of L^1 functions that converges to f in the L^1 norm, then there is a subsequence f_{n_k} such that $f_{n_k}(x) \to f(x)$ a.e.

Theorem 2.18. The following families of functions are dense in L^1 : simple functions, step functions, and continuous functions of compact support.

Theorem 2.19 (Transformation Invariance Properties of the Integral). Let $f \in L^1$. Then for $h \in \mathbb{R}^d$ and $\delta > 0$ we have

$$\int_{\mathbb{R}^d} f(x-h)dx = \int_{\mathbb{R}^d} f(x)dx$$
$$\int_{\mathbb{R}^d} f(\delta x)dx = \delta^{-d} \int_{\mathbb{R}^d} f(x)dx$$
$$\int_{\mathbb{R}^d} f(-x)dx = \int_{\mathbb{R}^d} f(x)dx$$

Theorem 2.20. Let $f \in L^1$ and $h \in \mathbb{R}^d$. Then $||f_h - f|| \to 0$ as $h \to 0$. Analogously, for $\delta > 0$, $||f(\delta x) - f(x)|| \to 0$ as $\delta \to 1$.

2.3 Fubini's Theorem and Consequences

Theorem 2.21 (Fubini's Theorem). Let f(x,y) be integrable on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$. Then for almost every $y \in \mathbb{R}^{d_2}$,

- 1. The slice f^y is integrable on \mathbb{R}^{d_1} .
- 2. The function $g: \mathbb{R}^{d_2} \to \mathbb{R}$ define by $g(y) = \int_{\mathbb{R}^{d_1}} f^y(x) dx$ is integrable on \mathbb{R}^{d_2} .
- 3. Integrating g gives the integral of f, that is,

$$\int_{\mathbb{R}^{d_2}} g(y) dy = \int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f(x, y) dx \right) dy = \int_{\mathbb{R}^{d_1 + d_2}} f(x, y) dx dy dx dy = \int_{\mathbb{R}^{d_1 + d_2}} f(x, y) dx dy dx$$

Consequently, we can interchange the order of integration as follows:

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f(x, y) dx \right) dy = \int_{\mathbb{R}^{d_1}} \left(\int_{\mathbb{R}^{d_2}} f(x, y) dy \right) dx$$

Theorem 2.22 (Tonelli's Theorem, AKA Fubini's Theorem Part Two). Let f be a non-neagative measurable function on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$. Then for almost every $y \in \mathbb{R}^{d_2}$,

- 1. The slice f^y is integrable on \mathbb{R}^{d_1} .
- 2. The function $g: \mathbb{R}^{d_2} \to \mathbb{R}$ define by $g(y) = \int_{\mathbb{R}^{d_1}} f^y(x) dx$ is integrable on \mathbb{R}^{d_2} .

3. Integrating g gives the integral of f, that is,

Consequently, we can interchange the order of integration as follows:

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f(x, y) dx \right) dy = \int_{\mathbb{R}^{d_1}} \left(\int_{\mathbb{R}^{d_2}} f(x, y) dy \right) dx$$

Theorem 2.23. Let E be a measurable subset of $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$. Then for almost every $y \in \mathbb{R}^{d_2}$, the slice

$$E^{y} = \{ x \in \mathbb{R}^{d_1} : (x, y) \in E \}$$

is a measurable subset of \mathbb{R}^{d_1} . Moreover, $m(E^y)$ is a measurable function of y and

$$m(E) = \int_{\mathbb{R}^{d_1}} m(E^y) dy$$

A symmetric result holds for x-slices of \mathbb{R}^{d_2} .

Theorem 2.24. If $E = E_1 \times E_2$ is a measurable subset of \mathbb{R}_d , and $m_*(E_2) > 0$, then E_1 is measurable.

Theorem 2.25. For $E_1 \subset \mathbb{R}^{d_1}$ and $E_2 \subset \mathbb{R}^{d_2}$, we have $m_*(E_1 \times E_2) \leq m_*(E_1)m_*(E_2)$. (Note that for this inequality, we interpret the product of zero and infinity to be zero.)

Theorem 2.26. Let $E_1 \subset \mathbb{R}^{d_1}$ and $E_2 \subset \mathbb{R}^{d_2}$ be measurable sets. Then $E_1 \times E_2$ is measurable in $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ and $m(E) = m(E_1)m(E_2)$. (we interpret zero times infinity to be zero.)

Theorem 2.27. Let $f: \mathbb{R}^{d_1} \to [-\infty, \infty]$ be a measurable function. Then the function $\widetilde{f}: \mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \to [-\infty, \infty]$ defined by $\widetilde{f}(x, y) = f(x)$ is measurable on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$.

Theorem 2.28 (Area Under a Curve). Let $f : \mathbb{R}^d \to [0, \infty]$ be a non-negative measurable function. Let

$$A = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : 0 \le y \le f(x)\}$$

Then f is measurable on \mathbb{R}^d if and only if A is measurable in \mathbb{R}^{d+1} , and if f is measurable, then

$$\int_{\mathbb{R}^d} f(x)dx = m(A)$$

This says that the measure of the area under an integrable function is equal to the integral of that function.

Theorem 2.29. If f is a measurable function on \mathbb{R}^d , then the function $\widetilde{f}(x,y) = f(x-y)$ is measurable on $\mathbb{R}^d \times \mathbb{R}^d$.

Theorem 2.30. Let f be integrable on \mathbb{R} . Then $F(x) = \int_{-\infty}^{x} f(t)dt$ is uniformly continuous.

Theorem 2.31 (Tchebychev Inequality). Let $f \ge 0$ and f be integrable. For $\alpha > 0$ and $E_{\alpha} = \{x : f(x) > \alpha\}$, we have

$$m(E_{\alpha}) \le \frac{1}{\alpha} \int_{E_{\alpha}} f$$

3 Chapter 3 - Differentiation

Theorem 3.1 (Hardy-Littlewood Maximal Function). Let $f \in L^1(\mathbb{R}^d)$. Then f^* is measurable, $f^*(x) < \infty$ for a.e. x, and for all $\alpha > 0$

$$m(\lbrace x \in \mathbb{R}^d : f^*(x) > \alpha \rbrace \leq \frac{3^d}{\alpha} \int_{\mathbb{R}^d} |f(y)| dy$$

Compare this to the Tchebychev inequality, which says

$$m(\lbrace x \in \mathbb{R}^d : f(x) > \alpha \rbrace \le \frac{1}{\alpha} \int_{\mathbb{R}^d} |f(y)| dy$$

Theorem 3.2 (Vitality Covering Lemma). Let $\{B_1, \ldots, B_N\}$ be a finite collection of open balls in \mathbb{R}^d . There exists a disjoint subcollection B_{i_1}, \ldots, B_{i_k} such that

$$\bigcup_{n=1}^{N} B_n \subset \bigcup_{j=1}^{k} 3B_{i_j}$$

Thus

$$m\left(\bigcup_{n=1}^{N} B_n\right) \le 3^d \sum_{j=1}^{k} m(B_{i_j})$$

Theorem 3.3 (Lebesgue Differentiation Theorem). If $f \in L^1(\mathbb{R}^d)$, then

$$\lim_{\substack{m(B)\to 0\\x\in B}}\frac{1}{m(B)}\int_Bf(y)dy=f(x)$$

for almost every x. In fact, the result holds if we only assume that f is locally integrable.

Theorem 3.4. Let E be a measurable subset or \mathbb{R}^d and let A be the set of Lebesgue density points of E. Then almost every $x \in E$ is in A and almost every $x \in E^c$ is in A^c . Equivalently,

$$m(E \setminus A) = 0$$
 $m(A \setminus E) = 0$ $m(E) = m(A) = m(E \cap A)$

3.1 Bounded Variation and Absolute Continuity

Theorem 3.5. If F is real-valued, monotonic, and bounded, then F is of bounded variation.

Theorem 3.6. If F if differentiable everywhere and F' is bounded, then F is of bounded variation. Furthermore, F is absolutely continuous.

Theorem 3.7. Every BV function can be written as a difference of two increasing functions.

Theorem 3.8. Every BV function is differentiable almost everywhere.

Theorem 3.9 (Rising Sun Lemma). Let G be real-valued and continuous on \mathbb{R} , and let

$$E = \{x : G(x+h) > G(x) \text{ for some } h > 0\}$$

If E is nonempty, then it is open. In this case, E can be written as a countable disjoint union of open intervals $E = \bigcup (a_k, b_k)$ such that

$$G(b_k) = G(a_k)$$

Theorem 3.10. If F is increasing and continuous, then F' exists almost everywhere. Additionally, F' is measurable and nonnegative and

$$\int_{a}^{b} F'(x)dx \le F(b) - F(a)$$

Note: To get equality, we need stronger conditions on F. Specifically, we need absolute continuity.

Relevant "counter-example" to the obvious stronger version of the previous theorem: Let F be the Cantor-Lebesgue function. Then F'(x) = 0 a.e., so $\int_a^b F'(x) dx = 0$, but F(1) = 1 and F(0) = 0.

Theorem 3.11. Absolutely continuous functions are uniformly continuous.

Theorem 3.12. Absolutely continuous functions are of bounded variation.

Theorem 3.13. If F is absolutely continuous on [a,b], then T_F is absolutely continuous on [a,b].

Theorem 3.14. If f is integrable and $F(x) = \int_a^x f(y)dy$, then F is absolutely continuous.

Theorem 3.15. If F is absolutely continuous on [a,b], then F'(x) exists almost everywhere. If F'(x) = 0 for a.e. x, then F is constant.

Theorem 3.16. Suppose E is a set of finite measure and \mathcal{B} is a Vitali covering of E. Then for any $\delta > 0$ there is a finite, disjoint, collection of balls B_1, \ldots, B_N in \mathcal{B} such that

$$\sum_{i=1}^{N} m(B_i) \ge m(E) - \delta$$

That is, we can "approximate" the E with coverings of balls whose total measure only barely exceeds that of E.

Theorem 3.17. Suppose E is a set of finite measure and \mathcal{B} is a Vitali covering of E. Then for any $\delta > 0$ there is a finite, disjoint, collection of balls B_1, \ldots, B_N in \mathcal{B} such that

$$m\left(E\setminus\bigcup_{i=1}^{N}B_{i}\right)<2\delta$$

Theorem 3.18. Suppose F is absolutely continuous on [a,b]. Then F' exists almost everywhere and is integrable. Moreover,

$$\int_{a}^{x} F'(y)dy = F(x) - F(a)$$

for all $a \le x \le b$. In particular, we can choose x = b to get

$$\int_{a}^{b} F'(y)dy = F(b) - F(a)$$

Conversely, if f is integrable on [a, b] then if we define $F(x) = \int_a^x f(y) dy$, then F'(x) = f(x) almost everywhere.

Theorem 3.19. A bounded increasing function on [a,b] has at most countably many jump discontinuities.

Theorem 3.20. Let F be increasing and bounded on [a,b]. Then $J_F(x)$ is discontinuous exactly at the points $\{x_n\}$ and has a jump at x_n equal that of F. Furthermore, the function $F(x) - J_F(x)$ is increasing and continuous.

Theorem 3.21. Let F be increasing and bounded on [a,b] and let $J_F(x)$ be its jump function. Then J'(x) exists a.e. and J'(x) = 0 a.e.

Theorem 3.22. If $F \in BV[a, b]$, then

$$\int_{a}^{b} |F'(x)| dx \le T_F(b)$$

Equality holds if and only if F is absolutely continuous.

Theorem 3.23. If $f : \mathbb{R} \to \mathbb{R}$ is absolutely continuous, then f maps sets of measure zero to sets of measure zero, and f maps measurable sets to measurable sets.

Theorem 3.24 (Change of Variable Formula). Let F be absolutely continuous and increasing on [a,b] and set A = F(a) and B = F(b). Let f be a measurable function on [A,B]. Then f(F(x))F'(x) is measurable on [a,b], and if f is integrable on [A,B] then

$$\int_{A}^{B} f(y)dy = \int_{a}^{b} f(F(x))F'(x)dx$$

4 Chapter 6 - Abstract Measures

4.1 Abstract Measure Spaces

Theorem 4.1. Let m_* denote the Lebesque outer measure. Then m_* is an outer measure.

Theorem 4.2. Let m_* denote the Lebesgue outer measure. Then a set $E \subset \mathbb{R}^d$ is Carathéodory measurable with respect to m_* if and only if E is Lebesgue measurable.

Theorem 4.3. Let X be a set and μ_* be an outer measure. Then the collection \mathcal{M} of Carathéodory measurable sets forms a σ -algebra, and $\mu_*|_{\mathcal{M}}$ is a measure.

Theorem 4.4. If μ_* is a metric exterior measure on a metric space X, then the Borel sets in X are measurable. Therefore, $\mu_*|_{B_X}$ is a measure.

Theorem 4.5. Let (X,d) be a measure set and μ is a Borel measure on X such that for a ball B of finite radius, $\mu(B)$ is finite. Then μ is a regular measure.

Theorem 4.6. If μ_0 is a premeasure on an algebra A, define μ_* on any subset E of X by

$$\mu_*(E) = \inf \left\{ \sum_{j=1}^{\infty} \mu_0(E_j) : E \subset \bigcup_{j=1}^{\infty} E_j, \ E_j \in \mathcal{A} \right\}$$

Then μ_* is an exterior measure on X that satisfies $\mu_*(E) = \mu_0(E)$ for $E \in \mathcal{A}$, and all sets in \mathcal{A} are Carathéodory measurable.

Theorem 4.7. Let \mathcal{A} be an algebra of sets in X and μ_0 a premeasure on \mathcal{A} and \mathcal{M} the σ -algebra generated by \mathcal{A} . Then there is a measure μ on \mathcal{M} that extends μ_0 .

4.2 Integration in Abstract Measure Spaces

All of the following definitions, concepts, and theorems are easily generalized from the development of Lebesgue measure and Lebesgue integration on \mathbb{R}^d to a general σ -finite measure space.

- 1. Almost everywhere
- 2. Measurable functions, simple functions
- 3. Every non-negative measurable function can be approximated by an increasing sequence of simple functions.
- 4. Every measurable function can be approximated by a sequence of simple functions.
- 5. Egorov's Theorem
- 6. Integrable functions
- 7. Fatou's Lemma, Monotone Convergence Theorem, Dominated Convergence Theorem
- 8. The space $L^1(X,\mu)$ of integrable functions is a Banach space.
- 9. Fubini and Tonelli Theorems

Theorem 4.8. Let F be an increasing and normalized function on \mathbb{R} . Then there is a unique measure μ (also denoted dF) on the Borel sets of \mathbb{R} such that $\mu((a,b]) = F(b) - F(a)$ for

a < b. Conversely, if μ is a measure on the Borel sets of \mathbb{R} that is finite on bounded intervals, then F defined by

$$F(x) = \begin{cases} -\mu((-x,0]) & x < 0 \\ 0 & x = 0 \\ \mu((0,x]) & x > 0 \end{cases}$$

is increasing and normalized.

Theorem 4.9. Two increasing functions F and G give the same measure if F-G is constant.

Theorem 4.10. If F is absolutely continuous on [a, b], then

$$\int_{a}^{b} f(x)dF(x) = \int_{a}^{b} f(x)F'(x)dx$$

for every Borel measurable function f that is integrable with respect to $d\mu$.

Theorem 4.11. Let ν be a signed measure. Then the total variation of ν , denoted $|\nu|$, is a positive measure, and satisfies $\nu \leq |\nu|$.

Theorem 4.12. If $\nu \ll \mu$ and $\nu \perp \mu$, then $\nu(E) = 0$ for all E.

Theorem 4.13. Let (X, \mathcal{M}, μ) be a measure space and let $f \in L^1(X, \mu)$. Then ν defined by

$$\nu(E) = \int_{E} f d\mu$$

is a signed measure on X. Furthermore, $\nu \ll \mu$.

Theorem 4.14 (Radon-Nikodym Theorem). Let μ be a σ -finite positive measure on the measure space (X, \mathcal{M}) and let ν be a σ -finite signed measure on \mathcal{M} . Then there exist unique signed measure ν_a and ν_s so that $\nu_a \ll \mu$ and $\nu_s \perp \mu$ and $\nu = \nu_a + \nu_s$. In addition, the measure ν_a is of the form $d\nu_a = f d\mu$, that is,

$$\nu_a(E) = \int_E f(x)d\mu$$

for some extended μ -integrable function f.

Theorem 4.15. Let C([a,b]) denote the vector space of continuous functions on the compact interval [a,b]. If μ is a Borel measure on [a,b] with $\mu([a,b]) < \infty$, then $\ell : C([a,b]) \to [\infty,\infty]$ given by

$$\ell(f) = \int_{a}^{b} f(x)d\mu$$

is a linear functional. It is positive $(f \ge 0 \implies \ell(f) \ge 0)$. Conversely, if ℓ is a positive linear functional on C([a,b]), then there is a unique Borel measure μ so that $\ell(f) = \int_a^b f d\mu$ for $f \in C([a,b])$.